
Multi-Pass Multi-Strategy NLP

Amnon Meyers
Text Analysis International, Inc.
1669-2 Hollenbeck Ave. #501
Sunnyvale, CA 94087 USA

amnon.meyers@textanalysis.com

Abstract

We describe a novel multi-pass, multi-
strategy architecture for natural language
processing (NLP). The commercial inte-
grated development environment (IDE),
VisualText(TM), and the associated
NLP++(TM) programming language, as
well as derived applications, serve to il-
lustrate the architecture and methodology.

1 Introduction

Figure 1. The Multi-Pass Architecture

Practical NLP systems must encompass a variety
of methods in order to support lexical, syntactic,
semantic, discourse, and pragmatic processing for

a real-world task. Two primary ways of achieving
this are: (1) develop the individual components and
integrate them later; (2) develop the overall system
in integrated fashion.

We focus here on method (2). Further, we de-
scribe an architecture (Figure 1) in which an arbi-
trary number of processing passes may be
elaborated, where each pass invokes its own proc-
essing algorithm and uses its own data. For exam-
ple, one pass may use a pattern-based matching
algorithm and an associated set of rules to recog-
nize location constructs in a text.

Each pass can be viewed as a YACC or Bison
grammar with its attendant code actions.

The passes of the multi-pass architecture are
constrained to share a single parse tree. Each pass
receives the cumulative parse tree, elaborates it
further, then hands it to a subsequent pass. While
the constraint to a single parse tree appears to limit
the handling of ambiguity, we touch on various
methods that address ambiguity within the archi-
tecture.

In addition to managing a unique parse tree, the
passes may also update and access an integrated
knowledge base (KB), as well as general pro-
grammatic data structures. The VisualText IDE
(TAI, 2003) uses a hierarchical knowledge base
management system (KBMS), for mapping knowl-
edge in a more natural fashion than a relational
database.

A unifying programming language is a key
component of the architecture, enabling NLP de-
velopers to manage the passes, parse tree, associ-
ated knowledge and programming constructs.

Some advantages of the architecture:

- Integration. A spectrum of strategies and
levels of granularity can interact within a
single framework.

- Modularity, extensibility, maintainability.
Passes can be elaborated such that each
performs a simple and modular task.

- Flexibility. Passes may be added to the
framework in any order, so that work that
was initially glossed over or forgotten
may be added in at a later point.

- Feedback, deferral. Rather than making
uninformed decisions upfront, passes can
be implemented to gather data and “try
things out”, in order to increase confi-
dence in subsequent processing deci-
sions.

- Context. By splitting the NLP system
into multiple passes, each pass may be
constrained to operate on particular con-
texts. For example, a parsing pass might
work only within noun phrases or within
the header zones of a text being analyzed.

- Automation. Passes within the architec-
ture can dynamically create and execute
new passes, e.g., based on patterns
learned from a corpus.

The architecture can be readily embedded
within a programming language and implemented
within a graphical development environment, af-
fording substantial efficiencies for language engi-
neering. Analyzers and sequences of passes can be
configured for reuse as templates or as libraries.

While the architecture accommodates various
application types, such as information extraction,
full-scale parsing, language generation and transla-
tion, we shall assume that the primary application
under discussion is “analysis”, such as information
extraction.

We refer to the NLP++ programming language
(TAI, 2003) and its implementation in the com-
mercial VisualText IDE as exemplars of this meth-
odology.

We discuss applications built using the multi-
pass methodology, including the TAIParse general
analyzer and Resume Analyzer developed with
NLP++.

2

3

Background

TexUS (de Hilster and Meyers, 1991; Meyers and
de Hilster, 1992) constitutes an early version of a

multi-pass, multi-strategy NLP architecture.
TexUS lacked a unifying programming language,
but enabled passes to be matched with rule sets and
declaratively maintained the NLP system defini-
tion, knowledge, rules, and even parse trees within
a unitary KBMS. With a scant 2 person-month
customization effort using a 9-month-old IDE, a
TexUS-built analyzer achieved an impressive re-
sult at MUC-3 (de Hilster and Meyers, 1991).

A treatment of NLP architectures and integrated
development environments appears in (TAI, 2001).

Architectures based mainly on a single para-
digm such as cascaded finite state transducers, e.g.,
INTEX (Silberztein, 2000) and FASTUS (Appelt
et al, 1993), or pattern-based processing, e.g.,
DEFT (Noah and Weeks, 1993), are known, as are
hybrid architectures, e.g., GATE (Gaizauskas et al,
1996) and PAKTUS (Loatman, 1991).

TAIParse Application

We describe the architecture as applied to the
TAIParse1 general analyzer, which performs lexi-
cal, syntactic, and semantic processing in inte-
grated fashion.

A guiding philosophy in elaborating TAIParse
is to use knowledge only as necessary, that is, to
prefer heuristic methods wherever possible rather
than embedding large lists of data in the analyzer.

TAIParse currently comprises about 120 passes,
most of which use a workhorse pattern-based pass
algorithm, and some of which use a recursive
grammar algorithm (e.g., for collecting lists). The
passes can be roughly segregated into regions as
follows

Tokenize
Zoner
Lexical
Phrasal
Segmenter
Parser
Semantics
Discourse

A standard first pass performs tokenization, that
is, conversion of the characters of an input file to
tokens or units of alphabetic, numeric, punctuation,
and whitespace characters. Other passes are also
concerned with tokenization issues, for example,

1 Analyzer project and definition available from
http://www.textanalysis.com; requires VisualText to run.

http://www.textanalysis.com/

reasoning about whether two tokens should be
joined (e.g., “cross current”).

The Zoner is interesting in that it performs pars-
ing operations and other evidence-gathering on
isolated lines of text. In this way, it characterizes
individual lines and the relationships among them,
in order to decide upon the best separation of sen-
tences, paragraphs, headers, and other text regions.
One type of evidence pertains to the start and end
of each line. For example, if a line ends with an
English function word such as “the”, this adds evi-
dence for the presence of a prose or sentential re-
gion of lines.

While TAIParse minimizes the use of pre-built
knowledge, a list of English words and their possi-
ble syntax classes is included in the system. The
Lexical passes utilize that knowledge to character-
ize words (e.g., as known, unknown, spelling er-
rors). Part-of-speech (POS) tagging is distributed
throughout TAIParse. Syntactically unambiguous
words are tagged early on by the Lexical passes,
but tagging of ambiguous words is deferred to
passes dealing with clausal patterns, in order to
utilize context to enable informed POS tagging.

As the passes unfold, nodes for lines and white
space may be excised from the parse tree. This can
be done selectively within nodes of the parse tree
labeled as text regions.

Phrasal passes occur at various points to recog-
nize relevant idioms and collocations.

The Segmenter creates nodes (called segments)
primarily based on boundaries such as English
function words (“the”, “is”, “of”) and prose punc-
tuation. Subsequent passes then reason about the
content and structure of isolated segments, as well
as about the context surrounding segments. In
some cases, segments are re-segmented, for exam-
ple to separate a verb from the start of a noun
phrase. Since actions deemed to be erroneous may
be undone or redone, this is one means for han-
dling ambiguous constructs.

The Parser passes are primarily pattern-based
rather than relying on recursive grammar algo-
rithms. Segment resolution passes are interspersed
with chunking and “parsing” passes, so as to use
feedback to assign segments and their boundaries
with greater confidence.

The Semantic and Discourse passes utilize the
parse tree, parse tree “semantics” (i.e., data layered
into the parse tree nodes), and data schemas within
the KB in order to perform tasks such as anaphora

resolution, correlation of the events described in a
text, and application-specific processing.

In summary, the architecture allows analyzers
such as TAIParse to use characterization, feedback,
deferral, and context in order to make informed
decisions during the analysis of a text.

4

5

Other Applications

A Resume Analyzer prototype2 for web re-
sumes is noteworthy in several respects. With 6
person-months of development and elaboration of
250 passes, it achieves about an 80% F-Measure
(90% precision and 75% recall) in extracting con-
tact, experience, and education records from un-
seen resumes. Resumes are difficult to process
accurately due to a multiplicity of formats and
mangling of formats in converting, e.g., HTML to
plain text.

The Resume Analyzer makes substantial use of
automated generation of passes from annotated
resumes. It features a sophisticated zoning capa-
bility, as well as a confidence-based treatment of
generalized capitalized phrases. E.g., some passes
reason about boundaries between capitalized
phrases and criteria for merging proximate capital-
ized phrases.

Some recent applications based on VisualText
and NLP++ involve analyzers invoking each other
as experts. For example, a focused crawler is un-
der development in which one analyzer manages
the list of URLs to be crawled and tracks URLs
that have been visited, while invoking a second
analyzer to reason about links to pursue in a web-
site in order to locate an organization’s employees.
A third analyzer specializes in web pages contain-
ing lists of people, while a fourth specializes in
processing an individual’s home page.

NLP++ Programming Language

An architecture for NLP is incomplete without a
programming language to serve as its “glue.”
While a standard programming language with
added libraries for the architecture is helpful, our
experience indicates that a programming language
specialized for the architecture substantially en-
hances its value.

For the multi-pass, multi-strategy architecture
described here, the programming language should

2 Also available from http://www.textanalysis.com.

http://www.textanalysis.com/

define the analyzer, including algorithms, rules, and associated code.

@CODE
 G(“count nps”) = 0; # Initialize counter for nps.

 # Create a KB concept for storing noun phrases.
 G(“kb nps”) = makeconcept(findroot(), “nps”);
@@CODE

Constrain rule-matching context to _sentence nodes.
@PATH _ROOT _paragraph _sentence

Recognize a noun phrase.
@POST
 ++G(“count nps”); # Increment global count of nps.
 ++X(“nps”,2); # Increment counter in _paragraph node.
 S(“nouns”) = N(5); # _np node gets a pointer to _nouns node.

 # Make a KB concept for this noun phrase.
 L(“con”) = makeconcept(G(“kb nps”), str(G(“count nps”)));

 # Add the noun phrase’s text as an attribute named “text”
 # attached to the KB concept representing the noun phrase.
 replaceval(L(“con”),”text”, phrasetext());

 single(); # Normal rule reduce to create _np node.
@RULES
_np <-
 _det
 _xWILD [star match=(_adv _advl) group=_advls]
 _quan
 _adj
 _xWILD [plus match=(_noun) group=_nouns]

@@

Figure 2. NLP++ Pass File Code Sample

It should address the parse tree, the semantic in-

formation decorating the parse tree, and the objects
within the associated knowledge base. It should
provide built-in functions that support all the needs
of the NLP developer.

Figure 2 depicts a sample of NLP++ code for a
single pass file with a single rule, which we de-
scribe to give a flavor of a language tailored for an
NLP architecture. Some lines are explained by the
comments that precede them or that occur at the
end of the line.

We assume that the pass algorithm is pattern-
based, though the same syntax works for recursive-
grammar passes as well.

NLP++ uses the at-sign (“@”) to mark bounda-
ries in a pass file. Thus, @CODE denotes the start
of a rule-independent code region, while the op-
tional @@CODE denotes the end of that region of
the pass file. The @CODE region executes before
rules, if any, in the pass file are executed by the

(pattern-based) pass algorithm. A @DECL region,
not shown, can precede the @CODE region, serv-
ing as a locus for user-defined NLP++ functions
(which may be invoked anywhere in the analyzer).

 Within the @CODE region, a global variable
named “count nps” is created with initial value
zero. G refers to global variables (whose scope is
analyzer-wide for the analysis of the current input
text).

 Next, a global variable called “kb nps” is cre-
ated. Its value is a KB concept named “nps”,
placed directly under the root of the hierarchical
KB. The built-in NLP++ function findroot returns
the root of the KB hierarchy, while the built-in
makeconcept(parent_concept, child_name_string)
creates a child-concept under a given KB concept.

The @PATH marker specifies the parse tree
context in which patterns of the current pass will
be matched. In this case, the pass algorithm
searches directly under the root of the parse tree

(named “_ROOT”) for nodes named “_paragraph”
and below them for nodes named “_sentence.”
Rules in the pass file are constrained to match only
under such “_sentence” nodes of the parse tree.
Such context specifiers enable fine-grained control
of pattern-matching within the NLP system and
can help reduce spurious pattern matching.

Next is a @POST region, which contains code
or actions to execute whenever a rule (within the
immediately following @RULES region) matches
a phrase directly under a “_sentence” node. C++ -
like syntax is used to increment some variables.
The X variable reference enables nodes in the
@PATH or context to be accessed, while S refer-
ences the suggested or reduced concept of the sub-
sequent rules, N references the nodes in the right-
hand-side phrase of rules, and L references local
variables.

Explicit variable references help manage the
many contexts and scopes inherent in NLP++,
which effectively integrates pass, rule, and code
syntax.

The one rule shown (starting with the line “_np
<-“) is representative of the rule or pattern syntax
of NLP++. In this case “_np” denotes the sug-
gested or reduce node to be created when the
phrase following the “<-“ arrow matches. The
phrase consists of five elements, each on a separate
line. The elements are _det, _xWILD, _quan, _adj,
_xWILD. Each element is optionally followed by
specifications within square brackets. The first
_xWILD denotes a wildcard constrained to match
_adv or _advl (e.g., an adverbial node), while the
second _xWILD is constrained to match one or
more adjacent nodes named _noun and to group
them under a new node called “_nouns.” The @@
marker denotes the end of the rule.

NLP++ exemplifies a language tailored for a
multi-pass architecture, and which encompasses
passes, code, contexts, rules, parse tree nodes, and
knowledge base objects, as well as managing a
variety of scopes and programming contexts (pass
vs. rules vs. code).

6 Conclusion

We have described a multi-pass, multi-strategy
architecture that operates on a single shared parse
tree per text being processed. Each pass may exe-
cute its own algorithm and use its own data.

An associated KBMS can serve to store infor-
mation across multiple input texts, as well as serv-
ing as a “sandbox” for arbitrary knowledge
representation schemas. Primary uses are for man-
aging entities in semantic and discourse processes
of the NLP system.

Critical to the utility of the methodology de-
scribed is a programming language that addresses
all the facets of the architecture, including passes,
parse trees, parse tree semantics, contexts, and
knowledge base objects.

NLP++ and its implementation within the Visu-
alText IDE, as well as derived applications, exem-
plify this type of architecture and language
engineering methodology in practice.

References
Douglas E. Appelt, Jerry R. Hobbs, John Bear, David

Israel, Mabry Tyson. 1993. FASTUS: A Finite-State
Processor for Information Extraction from Real-
World Text. IJCAI. 1172-1178.

David de Hilster and Amnon Meyers. 1991. Descrip-
tion of the INLET System Used for MUC-3. Pro-
ceedings of MUC-3. DARPA. 178-182.

Robert Gaizauskas, Hamish Cunningham, Yorick
Wilks, Peter Rodgers, Kevin Humphreys. 1996.
GATE: An Environment to Support Research and
Development in Natural Language Engineering.
Proceedings of the 8th IEEE International Confer-
ence on Tools with Artificial Intelligence. Toulouse,
France.

Bruce Loatman. 1991. Description of the PAKTUS
System Used for MUC-3. Proceedings of MUC-3.
DARPA. 191-199.

Amnon Meyers and David de Hilster. 1992. Descrip-
tion of the TexUS System as Used for MUC-4. Pro-
ceedings of MUC-4. DARPA. 207-214.

William W. Noah and Rollin V. Weeks. 1993. De-
scription of the DEFT System as Used for MUC-5.
Proceedings of MUC-5. 237-248.

Max Silberztein. 2000. INTEX: An FST Toolbox.
Theoretical Computer Science, 231(1):33-46.

TAI. 2001. Integrated Development Environments for
Natural Language Processing. Text Analysis Inter-
national. http://www.textanalysis.com/TAI-IDE-WP.
pdf

TAI. 2003. VisualText Help. Text Analysis Interna-
tional. http://www.textanalysis.com/help/help.htm

	Introduction
	Background
	TAIParse Application
	Other Applications
	NLP++ Programming Language
	Conclusion

