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Abstract 

We describe a novel multi-pass, multi-
strategy architecture for natural language 
processing (NLP).  The commercial inte-
grated development environment (IDE), 
VisualText(TM), and the associated 
NLP++(TM) programming language, as 
well as derived applications, serve to il-
lustrate the architecture and methodology. 

1 Introduction 

 
 

Figure 1.  The Multi-Pass Architecture 
 
Practical NLP systems must encompass a variety 
of methods in order to support lexical, syntactic, 
semantic, discourse, and pragmatic processing for 

a real-world task.  Two primary ways of achieving 
this are: (1) develop the individual components and 
integrate them later; (2) develop the overall system 
in integrated fashion. 

We focus here on method (2).  Further, we de-
scribe an architecture (Figure 1) in which an arbi-
trary number of processing passes may be 
elaborated, where each pass invokes its own proc-
essing algorithm and uses its own data.  For exam-
ple, one pass may use a pattern-based matching 
algorithm and an associated set of rules to recog-
nize location constructs in a text. 

Each pass can be viewed as a YACC or Bison 
grammar with its attendant code actions. 

The passes of the multi-pass architecture are 
constrained to share a single parse tree.  Each pass 
receives the cumulative parse tree, elaborates it 
further, then hands it to a subsequent pass.  While 
the constraint to a single parse tree appears to limit 
the handling of ambiguity, we touch on various 
methods that address ambiguity within the archi-
tecture. 

In addition to managing a unique parse tree, the 
passes may also update and access an integrated 
knowledge base (KB), as well as general pro-
grammatic data structures.  The VisualText IDE 
(TAI, 2003) uses a hierarchical knowledge base 
management system (KBMS), for mapping knowl-
edge in a more natural fashion than a relational 
database. 

A unifying programming language is a key 
component of the architecture, enabling NLP de-
velopers to manage the passes, parse tree, associ-
ated knowledge and programming constructs. 

 
Some advantages of the architecture: 



- Integration.  A spectrum of strategies and 
levels of granularity can interact within a 
single framework. 

- Modularity, extensibility, maintainability.  
Passes can be elaborated such that each 
performs a simple and modular task. 

- Flexibility.  Passes may be added to the 
framework in any order, so that work that 
was initially glossed over or forgotten 
may be added in at a later point. 

- Feedback, deferral.  Rather than making 
uninformed decisions upfront, passes can 
be implemented to gather data and “try 
things out”, in order to increase confi-
dence in subsequent processing deci-
sions. 

- Context.  By splitting the NLP system 
into multiple passes, each pass may be 
constrained to operate on particular con-
texts.  For example, a parsing pass might 
work only within noun phrases or within 
the header zones of a text being analyzed. 

- Automation.  Passes within the architec-
ture can dynamically create and execute 
new passes, e.g., based on patterns 
learned from a corpus. 

The architecture can be readily embedded 
within a programming language and implemented 
within a graphical development environment, af-
fording substantial efficiencies for language engi-
neering.  Analyzers and sequences of passes can be 
configured for reuse as templates or as libraries. 

While the architecture accommodates various 
application types, such as information extraction, 
full-scale parsing, language generation and transla-
tion, we shall assume that the primary application 
under discussion is “analysis”, such as information 
extraction. 

We refer to the NLP++ programming language 
(TAI, 2003) and its implementation in the com-
mercial VisualText IDE as exemplars of this meth-
odology. 

We discuss applications built using the multi-
pass methodology, including the TAIParse general 
analyzer and Resume Analyzer developed with 
NLP++. 
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Background 

TexUS (de Hilster and Meyers, 1991; Meyers and 
de Hilster, 1992) constitutes an early version of a 

multi-pass, multi-strategy NLP architecture.  
TexUS lacked a unifying programming language, 
but enabled passes to be matched with rule sets and 
declaratively maintained the NLP system defini-
tion, knowledge, rules, and even parse trees within 
a unitary KBMS.  With a scant 2 person-month 
customization effort using a 9-month-old IDE, a 
TexUS-built analyzer achieved an impressive re-
sult at MUC-3 (de Hilster and Meyers, 1991). 

A treatment of NLP architectures and integrated 
development environments appears in (TAI, 2001). 

Architectures based mainly on a single para-
digm such as cascaded finite state transducers, e.g., 
INTEX (Silberztein, 2000) and FASTUS (Appelt 
et al, 1993), or pattern-based processing, e.g., 
DEFT (Noah and Weeks, 1993), are known, as are 
hybrid architectures, e.g., GATE (Gaizauskas et al, 
1996) and PAKTUS (Loatman, 1991). 

TAIParse Application 

We describe the architecture as applied to the 
TAIParse1 general analyzer, which performs lexi-
cal, syntactic, and semantic processing in inte-
grated fashion. 

A guiding philosophy in elaborating TAIParse 
is to use knowledge only as necessary, that is, to 
prefer heuristic methods wherever possible rather 
than embedding large lists of data in the analyzer. 

TAIParse currently comprises about 120 passes, 
most of which use a workhorse pattern-based pass 
algorithm, and some of which use a recursive 
grammar algorithm (e.g., for collecting lists).  The 
passes can be roughly segregated into regions as 
follows 

Tokenize 
Zoner 
Lexical 
Phrasal 
Segmenter 
Parser 
Semantics 
Discourse 

A standard first pass performs tokenization, that 
is, conversion of the characters of an input file to 
tokens or units of alphabetic, numeric, punctuation, 
and whitespace characters.  Other passes are also 
concerned with tokenization issues, for example, 

 
1 Analyzer project and definition available from 
http://www.textanalysis.com; requires VisualText to run. 

http://www.textanalysis.com/


reasoning about whether two tokens should be 
joined (e.g., “cross current”). 

The Zoner is interesting in that it performs pars-
ing operations and other evidence-gathering on 
isolated lines of text.  In this way, it characterizes 
individual lines and the relationships among them, 
in order to decide upon the best separation of sen-
tences, paragraphs, headers, and other text regions.  
One type of evidence pertains to the start and end 
of each line.  For example, if a line ends with an 
English function word such as “the”, this adds evi-
dence for the presence of a prose or sentential re-
gion of lines. 

While TAIParse minimizes the use of pre-built 
knowledge, a list of English words and their possi-
ble syntax classes is included in the system.  The 
Lexical passes utilize that knowledge to character-
ize words (e.g., as known, unknown, spelling er-
rors).  Part-of-speech (POS) tagging is distributed 
throughout TAIParse.  Syntactically unambiguous 
words are tagged early on by the Lexical passes, 
but tagging of ambiguous words is deferred to 
passes dealing with clausal patterns, in order to 
utilize context to enable informed POS tagging. 

As the passes unfold, nodes for lines and white 
space may be excised from the parse tree.  This can 
be done selectively within nodes of the parse tree 
labeled as text regions. 

Phrasal passes occur at various points to recog-
nize relevant idioms and collocations. 

The Segmenter creates nodes (called segments) 
primarily based on boundaries such as English 
function words (“the”, “is”, “of”) and prose punc-
tuation.  Subsequent passes then reason about the 
content and structure of isolated segments, as well 
as about the context surrounding segments.  In 
some cases, segments are re-segmented, for exam-
ple to separate a verb from the start of a noun 
phrase.  Since actions deemed to be erroneous may 
be undone or redone, this is one means for han-
dling ambiguous constructs. 

The Parser passes are primarily pattern-based 
rather than relying on recursive grammar algo-
rithms.  Segment resolution passes are interspersed 
with chunking and “parsing” passes, so as to use 
feedback to assign segments and their boundaries 
with greater confidence. 

The Semantic and Discourse passes utilize the 
parse tree, parse tree “semantics” (i.e., data layered 
into the parse tree nodes), and data schemas within 
the KB in order to perform tasks such as anaphora 

resolution, correlation of the events described in a 
text, and application-specific processing. 

In summary, the architecture allows analyzers 
such as TAIParse to use characterization, feedback, 
deferral, and context in order to make informed 
decisions during the analysis of a text. 
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Other Applications 

A Resume Analyzer prototype2 for web re-
sumes is noteworthy in several respects.  With 6 
person-months of development and elaboration of 
250 passes, it achieves about an 80% F-Measure 
(90% precision and 75% recall) in extracting con-
tact, experience, and education records from un-
seen resumes.  Resumes are difficult to process 
accurately due to a multiplicity of formats and 
mangling of formats in converting, e.g., HTML to 
plain text. 

The Resume Analyzer makes substantial use of 
automated generation of passes from annotated 
resumes.  It features a sophisticated zoning capa-
bility, as well as a confidence-based treatment of 
generalized capitalized phrases.  E.g., some passes 
reason about boundaries between capitalized 
phrases and criteria for merging proximate capital-
ized phrases. 

Some recent applications based on VisualText 
and NLP++ involve analyzers invoking each other 
as experts.  For example, a focused crawler is un-
der development in which one analyzer manages 
the list of URLs to be crawled and tracks URLs 
that have been visited, while invoking a second 
analyzer to reason about links to pursue in a web-
site in order to locate an organization’s employees.  
A third analyzer specializes in web pages contain-
ing lists of people, while a fourth specializes in 
processing an individual’s home page. 

NLP++ Programming Language 

An architecture for NLP is incomplete without a 
programming language to serve as its “glue.”  
While a standard programming language with 
added libraries for the architecture is helpful, our 
experience indicates that a programming language 
specialized for the architecture substantially en-
hances its value. 

For the multi-pass, multi-strategy architecture 
described here, the programming language should 

 
2 Also available from http://www.textanalysis.com. 

http://www.textanalysis.com/


define the analyzer, including algorithms, rules, and associated code. 
 

@CODE 
  G(“count nps”) = 0; # Initialize counter for nps. 
 
  # Create a KB concept for storing noun phrases. 
  G(“kb nps”) = makeconcept(findroot(), “nps”); 
@@CODE 
 
# Constrain rule-matching context to _sentence nodes. 
@PATH _ROOT _paragraph _sentence 
 
# Recognize a noun phrase. 
@POST 
  ++G(“count nps”); # Increment global count of nps. 
  ++X(“nps”,2);  # Increment counter in _paragraph node. 
  S(“nouns”) = N(5); # _np node gets a pointer to _nouns node. 
 
  # Make a KB concept for this noun phrase. 
  L(“con”) = makeconcept(G(“kb nps”), str(G(“count nps”))); 
 
  # Add the noun phrase’s text as an attribute named “text” 
  # attached to the KB concept representing the noun phrase. 
  replaceval(L(“con”),”text”, phrasetext()); 
 
  single(); # Normal rule reduce to create _np node. 
@RULES 
_np <- 
 _det 
 _xWILD [star match=(_adv _advl) group=_advls] 
 _quan 
 _adj 
 _xWILD [plus match=(_noun) group=_nouns] 

@@ 

 
Figure 2.  NLP++ Pass File Code Sample 

 
It should address the parse tree, the semantic in-

formation decorating the parse tree, and the objects 
within the associated knowledge base.  It should 
provide built-in functions that support all the needs 
of the NLP developer. 

Figure 2 depicts a sample of NLP++ code for a 
single pass file with a single rule, which we de-
scribe to give a flavor of a language tailored for an 
NLP architecture.  Some lines are explained by the 
comments that precede them or that occur at the 
end of the line. 

We assume that the pass algorithm is pattern-
based, though the same syntax works for recursive-
grammar passes as well. 

NLP++ uses the at-sign (“@”) to mark bounda-
ries in a pass file.  Thus, @CODE denotes the start 
of a rule-independent code region, while the op-
tional @@CODE denotes the end of that region of 
the pass file.  The @CODE region executes before 
rules, if any, in the pass file are executed by the 

(pattern-based) pass algorithm.  A @DECL region, 
not shown, can precede the @CODE region, serv-
ing as a locus for user-defined NLP++ functions 
(which may be invoked anywhere in the analyzer). 

 Within the @CODE region, a global variable 
named “count nps” is created with initial value 
zero.  G refers to global variables (whose scope is 
analyzer-wide for the analysis of the current input 
text). 

 Next, a global variable called “kb nps” is cre-
ated.  Its value is a KB concept named “nps”, 
placed directly under the root of the hierarchical 
KB.  The built-in NLP++ function findroot returns 
the root of the KB hierarchy, while the built-in 
makeconcept(parent_concept, child_name_string) 
creates a child-concept under a given KB concept. 

The @PATH marker specifies the parse tree 
context in which patterns of the current pass will 
be matched.  In this case, the pass algorithm 
searches directly under the root of the parse tree 



(named “_ROOT”) for nodes named “_paragraph” 
and below them for nodes named “_sentence.”  
Rules in the pass file are constrained to match only 
under such “_sentence” nodes of the parse tree.  
Such context specifiers enable fine-grained control 
of pattern-matching within the NLP system and 
can help reduce spurious pattern matching. 

Next is a @POST region, which contains code 
or actions to execute whenever a rule (within the 
immediately following @RULES region) matches 
a phrase directly under a “_sentence” node.  C++ -
like syntax is used to increment some variables.  
The X variable reference enables nodes in the 
@PATH or context to be accessed, while S refer-
ences the suggested or reduced concept of the sub-
sequent rules, N references the nodes in the right-
hand-side phrase of rules, and L references local 
variables. 

Explicit variable references help manage the 
many contexts and scopes inherent in NLP++, 
which effectively integrates pass, rule, and code 
syntax. 

The one rule shown (starting with the line “_np 
<-“) is representative of the rule or pattern syntax 
of NLP++.  In this case “_np” denotes the sug-
gested or reduce node to be created when the 
phrase following the “<-“ arrow matches.  The 
phrase consists of five elements, each on a separate 
line.  The elements are _det, _xWILD, _quan, _adj, 
_xWILD.  Each element is optionally followed by 
specifications within square brackets.  The first 
_xWILD denotes a wildcard constrained to match 
_adv or _advl (e.g., an adverbial node), while the 
second _xWILD is constrained to match one or 
more adjacent nodes named _noun and to group 
them under a new node called “_nouns.”  The @@ 
marker denotes the end of the rule. 

NLP++ exemplifies a language tailored for a 
multi-pass architecture, and which encompasses 
passes, code, contexts, rules, parse tree nodes, and 
knowledge base objects, as well as managing a 
variety of scopes and programming contexts (pass 
vs. rules vs. code). 

6 Conclusion 

We have described a multi-pass, multi-strategy 
architecture that operates on a single shared parse 
tree per text being processed.  Each pass may exe-
cute its own algorithm and use its own data. 

An associated KBMS can serve to store infor-
mation across multiple input texts, as well as serv-
ing as a “sandbox” for arbitrary knowledge 
representation schemas.  Primary uses are for man-
aging entities in semantic and discourse processes 
of the NLP system. 

Critical to the utility of the methodology de-
scribed is a programming language that addresses 
all the facets of the architecture, including passes, 
parse trees, parse tree semantics, contexts, and 
knowledge base objects. 

NLP++ and its implementation within the Visu-
alText IDE, as well as derived applications, exem-
plify this type of architecture and language 
engineering methodology in practice. 
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